

IN Situ Thermal Remediation of Liquid Waste Pits At the Closed Martinsville Landfill IN Situ Thermal Remediation of Liquid Waste Pits At the Closed Martinsville Landfill

Van Burbach, PhD, PG LaBella Associates

August 2021, Roanoke, VA

Martinsville Sanitary Landfill City of Martinsville, VA

Martinsville Sanitary Landfill

- Unlined MSW Landfill.
- Operated from 1971 2006.
- Two unlined disposal pits for liquid waste - mostly spent solvents, varnish, paint, etc. from the furniture industry.
- Liquid waste disposal ceased in approx. 1980.
- The pits are upgradient of the landfill.
- The facility is in a Groundwater Corrective Action Program.
- In 2016, VDEQ encouraged the City to clean up the pits.

Solvent Pits #1 & #2

- Operated ~1971 to ~1980.
- 2005-2006: Initial investigations:
 - Geophysical survey,
 - Soil sampling.
- June 2006: Passive soil vents installed in former solvent pits.
- December 2007: Impermeable soil cap installed on solvent pits.
- April 2016: Additional soil sampling, attempted wells in solvent pits.

Pit #2 Feb. 2019 Volume of Impacted Soil: Pit 1 = 4948 ft² x 52.5 ft = 9621 CY Pit 2 = 3848 ft² x 24.5 ft = 3492 CY

Highest Total VOC Concentration:

Pit 1: B-2 (15-20') = 12,675 mg/kg

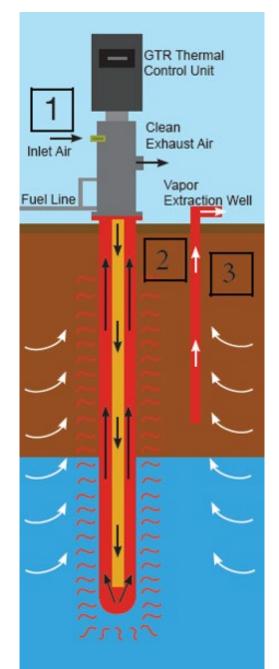
Pit 2: B-7 (20-25') = 4,745 mg/kg

Soil Sampling April 2016

	Pit 1	Pit 2
Average VOCs (mg/kg)	6,027	3,245
Volume (CY)	9,621	3,492
VOC Mass in Soil (tons)	88.0	17.2

ESTIMATED TOTAL VOCs in Soil = 105.2 equivalent tons

2016 Preliminary Cost Estimates for Remedial Options


ALTERNATE REMEDIES	Estimated Cost	Estimated Time
Soil Vapor Extraction (SVE) & Air Sparging (AS)	\$2,088,000	30 years
Excavation & Offsite Disposal (Non-Hazardous)	\$1,628,000	6 months
Excavation & Offsite Disposal (Hazardous)	\$6,443,000	6 months
Excavation & Ex-situ Bioremediation	\$2,863,000	18 months
Excavation & Soil Burning	\$3,778,000	12 months
In Situ Soil Mixing & Bioremediation	\$1,874,000	1-2 years
In Situ Enhanced Bioremediation (Injection)	\$1,852,400	2-3 years
In Situ Thermal Desorption (ISTD) In Situ Thermal Remediation (ISTR)	\$1,570,525	8-12 months

Options Analysis January 2016

ISTD Options Study July 2016

Interim Measures Work Plan Sept. 12, 2016 VDEQ Approval: Oct. 4, 2016

What is ISTD?

In Situ Thermal Desorption (aka – In Situ Thermal Remediation).

ISTD involves heating the subsurface to temperatures around the boiling point of the contaminants, thus fully releasing the volatile compounds in the soil and groundwater to be drawn off as steam and vapor through a vapor collection system. The vapors are then treated to remove most of the VOCs before being released to the atmosphere.

Why ISTD?

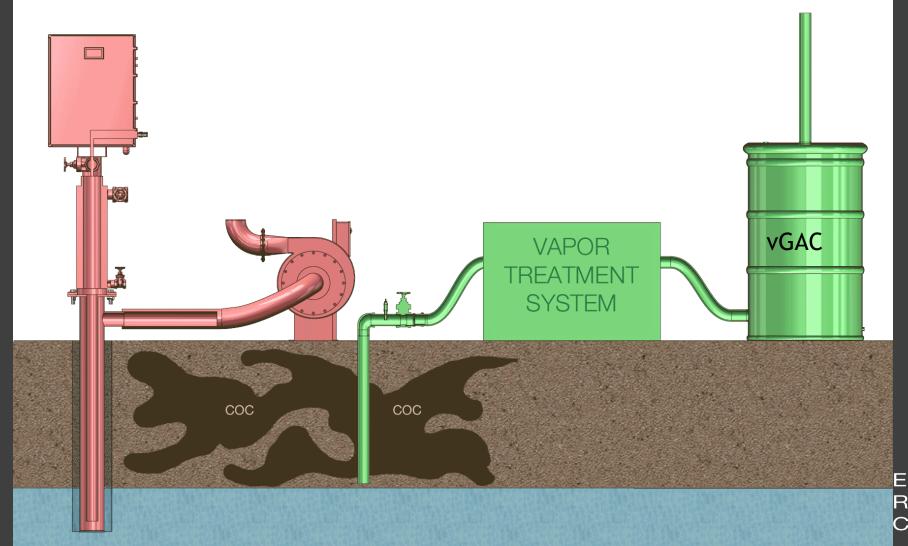
- Effective in almost any geologic setting, including vadose zone and saturated zone.
- Effective for most organic contaminates, especially VOCs.
- No excavation and minimal transportation of hazardous soil.
- No injection of chemicals into the subsurface.
- It is sustainable.
- It is fast.
- It is cost effective.

Heating Technologies:

- **Thermal Conduction Heating** (natural gas, electrical, etc. heating elements installed in heating wells).
- Electrical Resistance Heating (uses the flow of alternating current electricity to heat soil and groundwater and vaporize contaminants electric current is passed through the soil volume between subsurface electrodes).

What is GTR

GTR= Gas Thermal Remediation


 \triangleright

> Propane/Natural gas/Diesel as fuel to heat the thermal conduction heater wells.

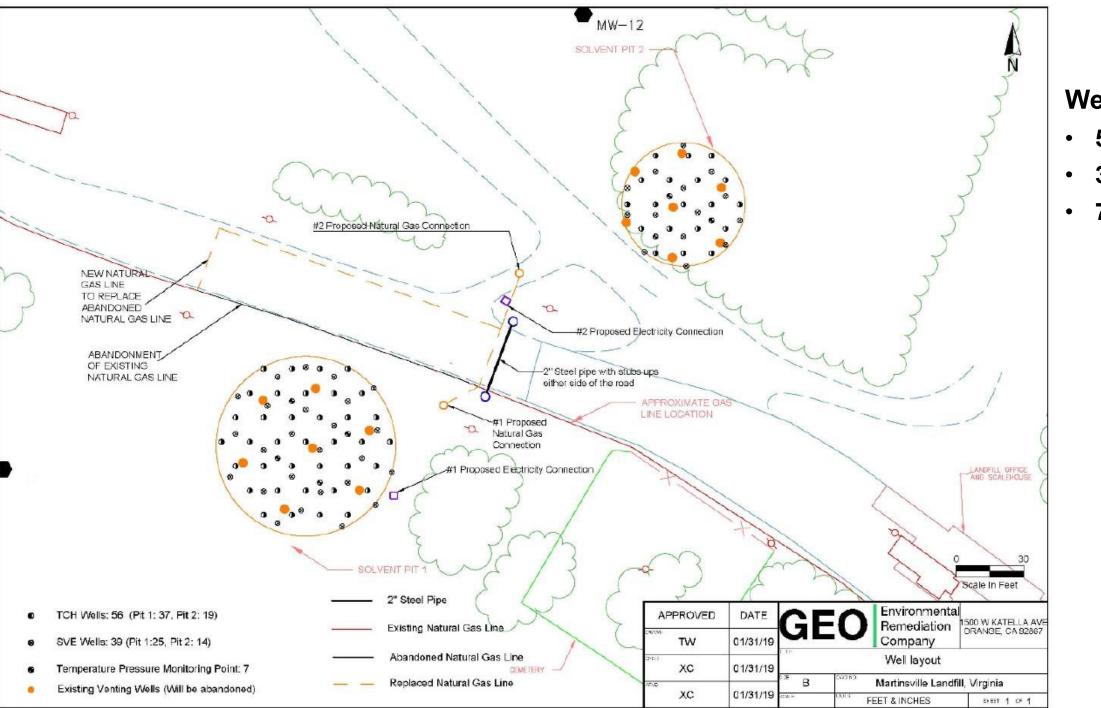
> Soil and groundwater are heated indirectly through conduction. Treatment temperatures from $\sim 100^{\circ}$ C to $\geq 400^{\circ}$ C.

> Vaporized contaminants collected from extraction wells are routed to the appropriate vapor treatment module.

Closed-loop in-situ thermal conduction heating system. No pollution emission

Environmental Remediation Company

Results of ISTD Bids - Oct. 2017


TECHNICAL APPROACH:	TCH - Gas	TCH - Electric	ERH	
CONSTRUCTION PHASE:	\$1,036,807	\$648,260	\$1,524,502	The winner
OPERATION PHASE:	\$285,886	\$948,433	\$602,320	GE
END PHASE:	\$74,760	\$276,600	\$104,682	Environme Remediation Company
Contractor Project Total:	\$1,397,454	\$1,873,293	\$ 2,231,503	TCH – GTF (Gas Thermal He

nmental liation ιny

GTR al Heating)

RFP for ISTD Implementation: Aug. 2017 Bids Received: Oct. 2017

TCH = Thermal Conduction Heating ERH = Electrical Resistance Heating

Well Layout:

- 56 THC Wells
- 39 SVE Wells
- 7 Temp/Pres

- 1) Abandon PSVs 2/25/2019
- 2) Begin Well Installations 2/26/2019

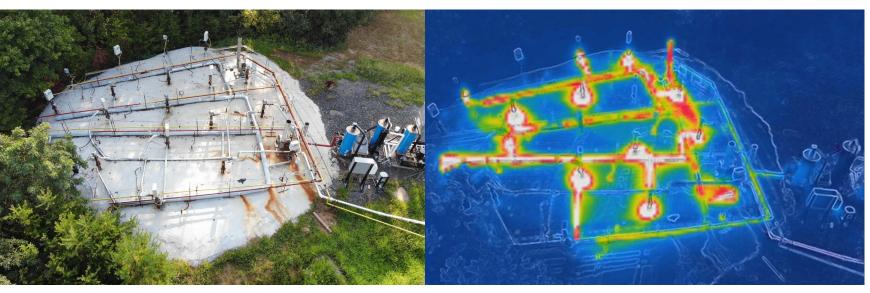
Hazardous Soil Cuttings: Approx. 60 CY of cuttings

D-Listed Hazardous Waste

Applied to top of Pit #2 and Remediated on site as part of the ISTD remediation.



- 1) Abandon PSVs 2/25/2019
- 2) Begin Well Installations 2/26/2019
- 3) Install Vapor Cap 4/06/19
 - Vermiculite
 - Gravel
 - Concrete



- Abandon PSVs 2/25/2019
- Begin Well Installations 2/26/2019
- Install Vapor Cap 4/06/19
- Install Inner Heating Sleeves 4/20/2019
- Install Piping & Equipment 4/13/2019

Pit 1 Sept. 2019

Pit 2 Sept. 2019

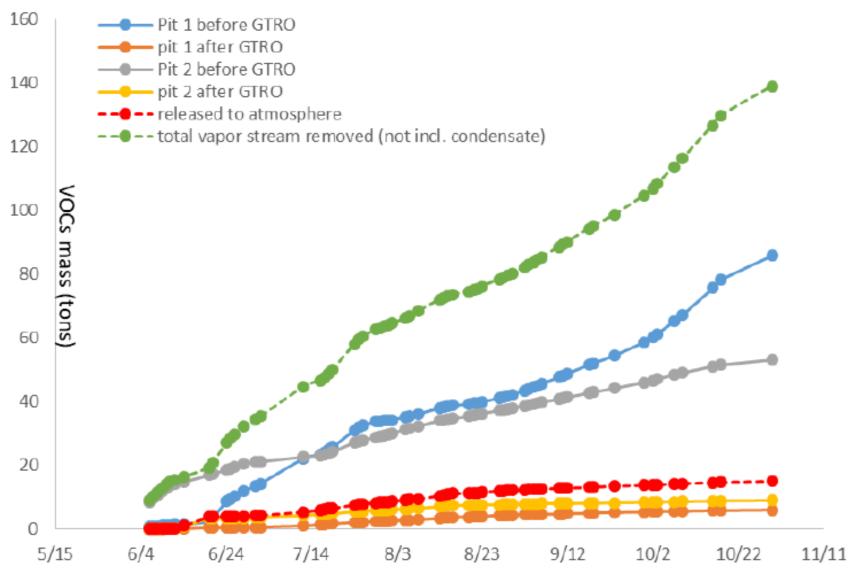
- 1) Abandon PSVs 2/25/2019
- 2) Begin Well Installations 2/26/2019
- 3) Install Vapor Cap 4/06/19
- 4) Install Inner Heating Sleeves -4/20/2019
- 5) Install Piping & Equipment -4/13/2019
- 6) Start Heating / 5/24/2019

7) Reach Target Temperature - 8/13/2019

100 °C

Vapor Treatment

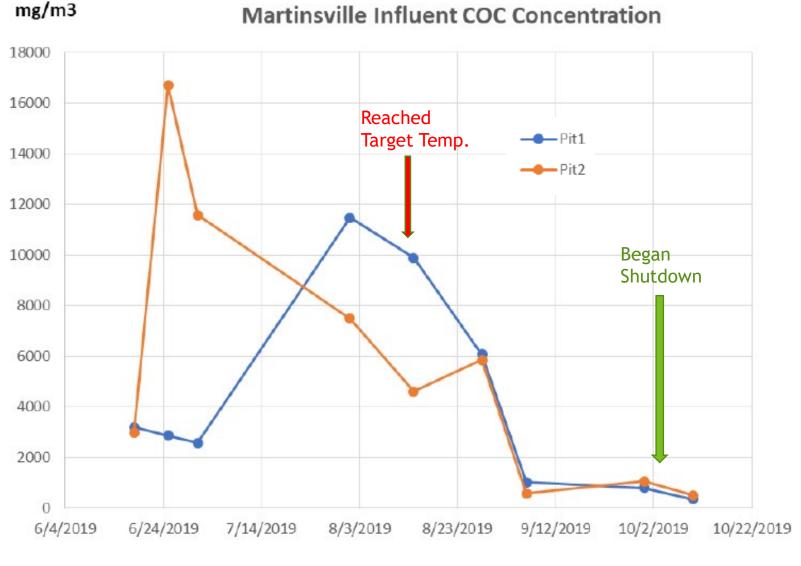
Treatment of Off-Gas from Extraction Wells:


- Vapor-liquid separators;
- Cooling of off-gas in heat exchangers;
- Condensate recovery;
- 720 gal. LNAPLs incinerated;
- Remaining liquid GAC filtered.
- Treatment of contaminated off-gas achieved >95% efficience.

GTR+O vapor treatment system:

The BTU value of the off-gas was used as a supplemental fuel for in situ heating, resulting in the thermal destruction of contaminants in the off-gas.

Vapor Treatment


VOCs Mass Accumulation Curve

Volatile Organic Compounds (VOCs) Removed as Vapors:

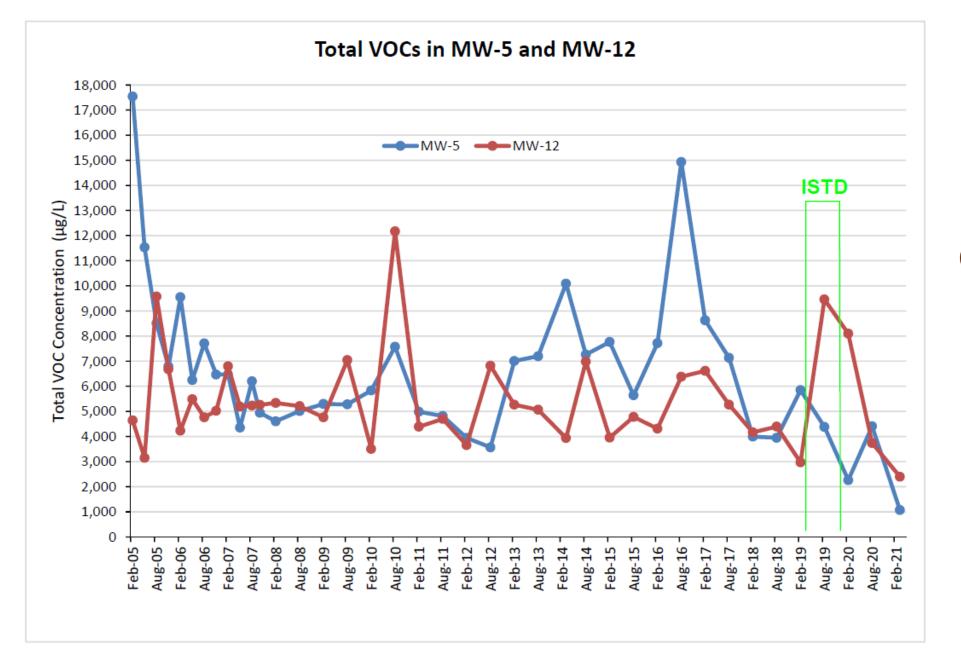
141.5 tons

(equivalent tons)

- 1) Abandon PSVs 2/25/2019
- 2) Begin Well Installations 2/26/2019
- 3) Install Vapor Cap 4/06/19
- 4) Install Inner Heating Sleeves 4/20/2019
- 5) Install Piping & Equipment 4/13/2019
- 6) Start Heating / 5/24/2019
- 7) Reach Target Temperature 8/13/2019
- 8) Turn off heaters in Pit 2 & reduce heaters in Pit 1 10/07/2019
- 9) All heaters and SVE system turned off 11/05/2019

- Abandon PSVs 2/25/2019
- Begin Well Installations 2/26/2019
- Install Vapor Cap 4/06/19
- Install Inner Heating Sleeves 4/20/2019
- Install Piping & Equipment 4/13/2019
- Start Heating / 5/24/2019
- Reach Target Temperature 8/13/2019
- 8) Turn off heaters in Pit 2 & reduce heaters in Pit 1 10/07/2019
- 9) All heaters and SVE system turned off 11/05/2019
- 10) Confirmatory Soil Sampling 11/05/2019

Confirmatory Soil Sampling Results


Pre-ISTD Soil Sampling Results	Solvent Pit #1						Sc	olvent Pit #	#2	
April 14, 2016 Soil Samples	B1 10-15'	B2 15-20'	B2 30-35'	B3 15-20'	B4 15-20'	B5 25-30'	B7 20-25'	B6 25-30'	B8 10-15'	B8 15-20'
Total VOCs (mg/kg):	655	12,675	836	7,746	8,222	1,902	4,745	4,277	3,118	2,185

Post-ISTD Soil Sampling Results	Solvent Pit #1					Sc	olvent Pit #	#2		
November 12, 2019 Soil Samples	B-1 12-13'	B2 12-13'	B2 30-35'	B3 15-20'	B4 12-13'	B5 27'	B7 17-18'	B6 25'	B8 10-15'	B8 15-20'
Total VOCs (mg/kg):	105.8	384.6	5.621	21.91	17.25	6.537	2.440	119.8	459.7	4.510

Percent Reduction for Corresponding Samples:	83.86%	96.97%	99.33%	99.72%	99.79%	99.66%	99.95%	97.20%	85.26%	99.79%
Average Reduction in each Pit	95.93%					96.37%				
Over-all Average Reduction in Total VOCs	96.15%									

- 1) Abandon PSVs 2/25/2019
 - Begin Well Installations 2/26/2019
 - Install Vapor Cap 4/06/19
 - Install Inner Heating Sleeves 4/20/2019
 - Install Piping & Equipment 4/13/2019
- 6) Start Heating / 5/24/2019
- 7) Reach Target Temperature 8/13/2021
- 8) Turn off heaters in Pit 2 & reduce heaters in Pit 1 10/07/2019
- 9) All heaters and SVE system turned off 11/05/2019
- 10) Confirmatory Soil Sampling 11/05/2019
- 11) Equipment Disassembled & Removed from Site November 2019
- 12) Heating Wells Abandoned December 2019 – SVE wells left in place.

Effect on Groundwater Concentrations

Actual Costs of the Martinsville Landfill In Situ Thermal Remediation Project

	GEO	LaBella	Total
FY-2019:	\$951,292.57	\$57,203.19	\$1,008,495.76
FY-2020:	\$268,970.00	\$21,187.95	\$290,157.95
PROJECT TOTAL:	\$1,220,262.57	\$78,391.14	\$1,298,653.71

Orginal Budget:	\$1,397,453.50	\$107,500.00	\$1,504,953.50
Savings:	\$177,190.93	\$29,108.86	\$206,299.79
% Savings:	12.68%	27.08%	13.71%

SOURCES of SAVINGS

- Innovative Air Effluent Treatment
- Lower Fuel Costs
- On-Site Remediation of Drill Cuttings

Martinsville Landfill ISTD Project Summary:

- > The ISTD system operated for a total of 165 days.
- More than 141.5 tons of volatile organic compounds (VOCs) were removed as vapors.
- The GTR-O treatment system achieved >95% average removal efficiency for off gasses.
- > 720 gallons of LNAPL were recovered and destroyed.
- > 96% reduction of VOC concentrations in the soils.
- Promising reductions in groundwater VOCs.
- Finished under budget.

QUESTIONS

Van Burbach, PhD, PG

Sr. Technical Consultant LaBella Associates - Greensboro, NC

vburbach@labellapc.com

